METHOD 3052

MICROWAVE ASSISTED ACID DIGESTION OF SILICEOUS AND ORGANICALLY BASED MATRICES

1.0 SCOPE AND APPLICATION

1.1 This method is applicable to the microwave assisted acid digestion of siliceous matrices, and organic matrices and other complex matrices. If a total decomposition analysis (relative to the target analyte list) is required, the following matrices can be digested: ashes, biological tissues, oils, oil contaminated soils, sediments, sludges, and soils. This method is applicable for the following elements:

Aluminum	Cadmium	Iron	Molybdenum	Sodium
Antimony	Calcium	Lead	Nickel	Strontium
Arsenic	Chromium	Magnesium	Potassium	Thallium
Boron	Cobalt	Manganese	Selenium	Vanadium
Barium	Copper	Mercury	Silver	Zinc
Beryllium		•		

Other elements and matrices may be analyzed by this method if performance <u>is demonstrated</u> for the analyte of interest, in the matrices of interest, at the concentration levels of interest (see Sec. 8.0).

<u>Note</u>: This technique is <u>not</u> appropriate for regulatory applications that require the use of leachate preparations (i.e., Method 3050, Method 3051, Method 1311, Method 1312, Method 1310, Method 1320, Method 1330, Method 3031, Method 3040). This method is appropriate for those applications requiring a total decomposition for research purposes (i.e., geological studies, mass balances, analysis of Standard Reference Materials) or in response to a regulation that requires total sample decomposition.

1.2 This method is provided as a rapid multi-element, microwave assisted acid digestion prior to analysis protocol so that decisions can be made about the site or material. Digests and alternative procedures produced by the method are suitable for analysis by flame atomic absorption spectrometry (FLAA), cold vapor atomic absorption spectrometry (CVAA), graphite furnace atomic absorption spectrometry (GFAA), inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and other analytical elemental analysis techniques where applicable. Due to the rapid advances in microwave technology, consult your manufacturer's recommended instructions for guidance on their microwave digestion system and refer to this manual's "Disclaimer" when conducting analyses using Method 3052.

1.3 The goal of this method is <u>total</u> sample decomposition and with judicious choice of acid combinations this is achievable for most matrices (see Sec. 3.2). Selection of reagents which give the highest recoveries for the target analytes is considered the optimum method condition.

CD-ROM

2.0 SUMMARY OF METHOD

2.1 A representative sample of up to 0.5 g is digested in 9 mL of concentrated nitric acid and usually 3 mL hydrofluoric acid for 15 minutes using microwave heating with a suitable laboratory microwave system. The method has several additional alternative acid and reagent combinations including hydrochloric acid and hydrogen peroxide. The method has provisions for scaling up the sample size to a maximum of 1.0 g. The sample and acid are placed in suitably inert polymeric microwave vessels. The vessel is sealed and heated in the microwave system. The temperature profile is specified to permit specific reactions and incorporates reaching 180 ± 5 °C in approximately less than 5.5 minutes and remaining at 180 ± 5 °C for 9.5 minutes for the completion of specific reactions (Ref. 1, 2, 3, 4). After cooling, the vessel contents may be filtered, centrifuged, or allowed to settle and then decanted, diluted to volume, and analyzed by the appropriate SW-846 method.

3.0 INTERFERENCES

3.1 Gaseous digestion reaction products, very reactive, or volatile materials that may create high pressures when heated and may cause venting of the vessels with potential loss of sample and analytes. The complete decomposition of either carbonates, or carbon based samples, may cause enough pressure to vent the vessel if the sample size is greater than 0.25 g. Variations of the method due to very reactive materials are specifically addressed in sections 7.3.4 and 7.3.6.1.

3.2 Most samples will be totally dissolved by this method with judicious choice of the acid combinations. A few refractory sample matrix compounds, such as TiO_2 , alumina, and other oxides may not be totally dissolved and in some cases may sequester target analyte elements.

3.3 The use of several digestion reagents that are necessary to either completely decompose the matrix or to stabilize specific elements may limit the use of specific analytical instrumentation methods. Hydrochloric acid is known to interfere with some instrumental analysis methods such as flame atomic absorption (FLAA) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The presence of hydrochloric acid may be problematic for graphite furnace atomic absorption (GFAA) and inductively coupled plasma mass spectrometry (ICP-MS). Hydrofluoric acid, which is capable of dissolving silicates, may require the removal of excess hydrofluoric acid or the use of specialized non-glass components during instrumental analysis. Method 3052 enables the analyst to select other decomposition reagents that may also cause problems with instrumental analyses necessitating matrix matching of standards to account for viscosity and chemical differences.

4.0 APPARATUS AND MATERIALS

4.1 Microwave apparatus requirements.

4.1.1 The temperature performance requirements necessitate the microwave decomposition system sense the temperature to within ± 2.5 °C and automatically adjust the microwave field output power within 2 seconds of sensing. Temperature sensors should be accurate to ± 2 °C (including the final reaction temperature of 180 °C). Temperature feedback control provides the primary control performance mechanism for the method. Due to the flexibility in the reagents used to achieve total analysis, tempertuare feedback control is necessary for reproducible microwave heating.

CD-ROM

Alternatively, for a specific set of reagent(s) combination(s), quantity, and specific vessel type, a calibration control mechanism can be developed similar to previous microwave methods (see Method 3051). Through calibration of the microwave power, vessel load and heat loss, the reaction temperature profile described in Section 7.3.6 can be reproduced. The calibration settings are specific for the number and type of vessel used and for the microwave system in addition to the variation in reagent combinations. Therefore no specific calibration settings are provided in this method. These settings may be developed by using temperature monitoring equipment for each specific set of equipment and reagent combination. They may only be used if not altered as previously described in other methods such as 3051 and 3015. In this circumstance, the microwave system provides programmable power which can be programmed to within ± 12 W of the required power. Typical systems provide a nominal 600 W to 1200 W of power (Ref. 1, 2, 5). Calibration control provides backward compatibility with older laboratory microwave systems without temperature monitoring or feedback control and with lower cost microwave systems for some repetitive analyses. Older lower pressure vessels may not be compatible.

4.1.2 The temperature measurement system should be periodically calibrated at an elevated temperature. Pour silicon oil (a high temperature oil into a beaker and adequately stirred to ensure a homogeneous temperature. Place the microwave temperature sensor and a calibrated external temperature measurement sensor into the beaker. Heat the beaker to a constant temperature of $180 \pm 5^{\circ}$ C. Measure the temperature with both sensors. If the measured temperatures vary by more than $1 - 2^{\circ}$ C, the microwave temperature measurement system needs to be calibrated. Consult the microwave manufacturer's instructions about the specific temperature sensor calibration procedure.

<u>CAUTION</u>: The use of microwave equipment with temperature feedback control is required to control the unfamiliar reactions of unique or untested reagent combinations of unknown samples. These tests may require additional vessel requirements such as increased pressure capabilities.

4.1.3 The microwave unit cavity is corrosion resistant and well ventilated. All electronics are protected against corrosion for safe operation.

<u>CAUTION</u>: There are many safety and operational recommendations specific to the model and manufacturer of the microwave equipment used in individual laboratories. A listing of these specific suggestions is beyond the scope of this method and require the analyst to consult the specific equipment manual, manufacturer, and literature for proper and safe operation of the microwave equipment and vessels.

4.1.4 The method requires essentially microwave transparent and reagent resistant suitably inert polymeric materials (examples are PFA or TFM suitably inert polymeric polymers) to contain acids and samples. For higher pressure capabilities the vessel may be contained within layers of different microwave transparent materials for strength, durability, and safety. The vessels internal volume should be at least 45 mL, capable of withstanding pressures of at least 30 atm (30 bar or 435 psi), and capable of controlled pressure relief. These specifications are to provide an appropriate, safe, and durable reaction vessel of which there are many adequate designs by many suppliers.

CD-ROM